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HAYES 1NTERNATlONAL CORPORATION 

ABSTRACT 

A re-evaluation of control system cr i ter ia  for minimizing lateral drift 

and structural  loading of large booster vehicles during launch is made. A 

simplified mathematical rigid body booster model, neglecting engine gimbal 

and accelerometer dynamics and employing lateral  acceleration feedback, is 

used in the analysis in order  that fundamental concepts can be simply illustrated. 

Basic understanding of the minimum drift and minimum load control cri teria i s  

obtained using a servo analysis approach in conjunction with statistical design 

techniques . 
Simplified lateral  drift and bending moment closed-loop transfer functions 

due to lateral  wind disturbances a r e  derived from application of root locus and 

frequency response analysis to the rigid booster model. Correlation of the sim- 

plified and exact t ransfer  function representation of the vehicle response is 

accomplished with an approximate statistical model of the lateral  wind input. 

Statistical techniques a r e  used as an aid in determining basic cri teria for mini- 

mum load and minimum drift control. 

Cri ter ia  fo r  minimum drift control a r e  easily defined, while the cri teria 

for  minimum load control a r e  not so apparent. 

M r .  R .  s. Ryan, Chief, Dynamics Analysis Branch of the Flight Mechanics 

and Dynamics Division of the Aero-Astrodynamics Laboratory was the technical 

supervisor and the work reported herein was accomplished under contract NAS8- 

20201 with the George C. Marshall Space Flight Center,  National Aeronautics 

and Space Administration. 



HAYES INTERNATiONAL CORPORATION 

T A B L E  OF C O N T E N T S  

TITLE 

LIST O F  F I G U R E S  

LIST O F  SYMBOLS 

INTR ODUCTJON 

RIGID BOOSTER C O N T R O L  

S I M P L I F I E D  T R A N S F E R  FUNCTIONS 

EVALUATION O F  S I M P L I F I E D  TRANSFER FUNCTIONS 

CRITERIA F O R  MINIMUM D R I F T  AND MINIMUM LOAD C O N T R O L  

CONCLUSIONS 

R E F E R E N C E S  

P A G E  

i 

ii 

1 

3 

12 

18 

19 

21 

22 



HAYES INTERNATIONAL CORPORATI ON 

LIST O F  FIGURES 

F I G U R E  T I T L E  P A G E  

1 C O N T R O L  SYSTEM BLOCK DIAGRAM 24 

2 EFFECT O F  POSITIVE L A T E R A L  A C C E L E R A T I O N  
F E E D B A C K  ON CLOSED-LOOP POLES OF A 

BODE PLOT OF E X A C T  7 ( s )  T R A N S F E R  FUNCTION 

SHOWING E F F E C T  OF ACCELERATION F E E D B A C K  

25 

ir 
3 

W 

26  

6 

7 

8 

9 

10 

1 1  

BODE PLOT OF E X A C T  - BM ( s )  T R A N S F E R  FUNCTION 
V 

SHOWING EFFECT OF ACCELERATION F E E D B A C K  

BODE PLOT O F  S I M P L I F I E D  7 y (9 )  T R A N S F E R  

FUNCTION SHOWING E F F E C T  O F  A C C E L E R A T I O N  
F E E D B A C K  28 

BODE PLOT OF S I M P L I F I E D  7 BM ( 8 )  TRANSFER 

FUNCTION SHOWING EFFECT OF A C C E L E R A T I O N  
F E E D B A C K  29 

W 

27 

W 

W 

T Y P I C A L  P O W E R  S P E C T R A  OF A T M O S P H E R I C  
T U R B U L E N C E  (T = 2 . 5 ,  L = 1000) 

W 
30 

E X A C T  AND S I M P L I F I E D  L A T E R A L  D R I F T  VELOCITY 
O U T P U T  P O W E R  S P E C T R A  31 

E X A C T  BENDING MOMENT O U T P U T  P O W E R  S P E C T R A  3 2  

S I M P L I F I E D  BENDING MOMENT O U T P U T  P O W E R  S P E C T R A  3 3  

EFFECT OF L A T E R A L  ACCELERATION F E E D B A C K  ON 
ROOT-MEAN-SQUARE L A T E R A L  D R I F T  VELOCITY AND 
RIGID BODY BENDING MOMENT (U = 2 . 5 ,  L = 1000) 34 

W 

1 2  EFFECT OF P I T C H  HEADING AND P I T C H  DAMPING 
GAINS ON T H E  A P P R O X I M A T E  L A T E R A L  D R I F T  POLE 35 

T A B L E  

1 RIGID BODY BOOSTER DATA ( t  = 80 s e c . )  5 



HAYES INTERNATIONAL CORPORATION 

LIST O F  SYMBOLS 

Real zeros 

Attitude loop gain of attitude control system 

Rate loop gain of attitude control system 

Lateral  acceleration 

Rigid body bending moment 

Coefficient of i-th order  denominator te rm 

Rigid vehicle aerodynamic coefficients 

Thrust 

Swivel engine thrust  

Longitudinal acceleration of the vehicle 

Gain of accelerator control loop 

Bending moment output power spectra 

S y s tem output spectra 

Lateral dr i f t  velocity output power spectra 

Effective moment of inertia of the vehicle about the c. g. 

Turbulence integral scale factor 

Vehicle mass 

Bending moment coefficient for angle of attack 

Bending moment coefficient for engine deflection 

Coefficient of i-th order numerator t e rm 

Dynamic pressure 

Time 

ii 

i .  

V 

c 



HAYES INTERNATIONAL CORPORATION 

i 
Q 

P 

+ 
B M  

Y 

U 

I T '  

U a  
W 

Subscript 

LIST OF SYMBOLS 

C o nt inue d 

Vehicle velocity 

Lateral  wind velocity 

Coordinate of engine gimbal point (measured positive from 
center of gravity towards the tail of the vehicle) 

A ccelerorneter location 

Lateral  translation of the rigid vehicle 

System frequency response function 

Lateral  drift velocity of rigid vehicle 

Rigid body angle of attack 

Swivel angle (angle of the engine gimbal relative to the 
vehicle centerline at the gimbal point) 

Pitch angle of rigid vehicle relative to inertial space 

Standard deviation (root-mean-square) of B M  

Standard deviation (root-mean-square) of Y 

Variance of the lateral wind input 

iii 

i Indicated order  



HAYES INTERNATIONAL CORPORATION 1 ~ 

INTRODUCTION 

The emphasis of current design philosophy regarding trajectory precision 

and structural  loading of large booster vehicles places stringent demands upon 

the vehicle control system when atmospheric turbulence and gust disturbances 

a re  considered. Maximum lateral  wind velocities of 75 meters  per  second in 

the region of maximum dynamic pressure during the boost phase are  not unreal- 

istic. 

to achieve minimum lateral  drift in combination with minimum structural  load- 

ing has attracted much effort during the past  decade. 

Accordingly, the problem of specifying the control system necessary 

While a number of complicated studies of the l a r g e  booster control problem 

in the past have succeeded in specifying several  control laws which approximately 

minimize lateral  drift and structural  loading simultaneously, none have yielded 

a simplified explanation of the basic principles involved in minimum drift and 

minimum load control. 

control tasks is of particular interest since the relation between minimum drift 

and minimum loading is complicated, and some compromise between drift mini- 

mization and load alleviation is usually necessary, 

is the development of simple cr i ter ia ,  fo r  minimum drift and minimum load 

control of large booster vehicles, which lend a simple understanding to the booster 

control problem. 

Such a fundamental understanding of the drift and load 

The objective of this study 
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i 

A large booster mathematical model, similar in size to the Saturn V 

launch vehicle as defined for the Apollo lunar landing mission, was selected for  

analysis. 

problem, simplified, single axis, rigid body motions only, for a fixed time of 

flight in the maximum "q" region of the boost stage, were considered. Three 

control loops form the basic control configuration: (1) Pitch position, (2)  pitch 

rate ,  and (3) lateral  acceleration feedback. The approach used in this study to 

develop criteria for minimum drift and load essentially involves determination 

of the effect each loop closure has upon the pole-zero movement of the lateral 

drift and rigid body bending moment closed loop transfer functions. 

In consideration of achieving the best understanding of the fundamental 

Two techniques a r e  utilized to attack the minimum drift and load control 

problem: (1) Servo analysis, including root locus, and frequency response, and 

( 2 )  simple statistical system design techniques. 

veloped f o r  the lateral  drift  per side wind input and rigid body bending moment 

pe r  side wind input closed loop transfer functions, and these approximate factors 

a r e  used to state cri teria for  minimizing drift and structural  loading. 

tion of the cri teria developed from the simplified transfer functions with exact 

results is accomplished with the a id  of statistical methods for computing the 

mean squared lateral  drift and mean squared bending moment. 

Approximate factors a r e  de- 

Correla- 
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RIGID BOOSTER CONTROL 

Vehicle Mathematical Model 

The vehicle mathematical model chosen for this study must account for  

two important aspects of the problem: (1) Representation of simplified vehicle 

dynamics and control, and (2) the lateral wind disturbance representation. 

wind input is considered later in the section on statistical analysis. 

The 

The vehicle 

equations of motion, which in this study include only rigid body dynamics, a r e  

derived using Lagrange's equations and a coordinate system having its origin 

a t  the center of gravity of the vehicle. 

was derived by the mode acceleration method. 

The rigid body bending moment equation 

The equations of motion des- 

cribing lateral  translation, pitch rotation, bending moment, and control of the 

vehicle are presented below. 

Lateral  Translation 

.. 
m y  - mg+ - FeP - QFoa = o 

Pitch Rotation 

Control Equation 

p - ao+- a1+- g z A  = 0 



HAYES INTERNATIONAL CORPORATION 

t 
Lateral Acceleration 

.. 
A - Y t g c p  = 0 

Angle of Attack 

W 
V i. 

c y - + + -  = - V V 

4 

(5) 

Rigid Body Bending Moment 

The control law used in this analysis provides the following feedbacks: 

(1) Pitch position fo r  heading control, (2 )  pitch rate for heading loop damping, 

and (3) la teral  acceleration for  lateral  drift and bending moment control. These 

I 

control loops are shown in Figure 1. 

sidered at this time. 

Other feedback quantities were not con- 

A rigid body mathematical model of the Saturn V,  a s  defined for the lunar 

landing mission, was selected for  this study. 

parameters  fo r  a time, t = 80 seconds, in the region of maximum dynamic 

pressure  a r e  listed in Table I. 

Numerical values of the model 
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TABLE 1 

RIGID BODY BOOSTER DATA (t = 80 seconds) 

= 0.48 
(Nominal Configuration) 

a1 = 1.1 

8 
F 

g 

V 

Q 

m 

I 

xE 

0 
F 

F1 

xA 

M' 
a 

M' 
B 

29.456 x lo6 nt. 

21.103 m/secz 

525.743 m/sec 

5.607 x lo6 

1.665 x lo6 kg. 

7.329 x lo8 kg-rn 2 

30.244 m. 

1.10 

-12.32 

0 

1.15 x 10' nt-m at X = 25 m. 

3.04 x lo8 nt-m at X = 25 m. 

5 
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Servo Analysis of the Rigid Booster Model 

Root locus and frequency response techniques a r e  used to investigate 

minimum drift and minimum load control and i t  will be shown that: (1) Minimum 

drift control, i. e.  , the minimization of lateral drift velocity clue to lateral  wind 

disturbances by feedback control, i s  defined approximately by the movement of 

a single real  root of the vehicle characteristic equation, and ( 2 )  load control of 

the rigid body bending moment due to lateral wind inputs, can be defined approxi- 

mately by one real  pole-zero pair. 

Determination of simplified cri teria for minimum drift and minimum load 

control f o r  various control configurations in te rms  of system closed loop poles 

and zeros is a primary objective of this analysis. Since the - ( s )  and - ( s )  

closed-loop t ransfer  functions a r e  characterized by the same characteristic 

equation, i. e .  , their denominators a r e  identical, the vehicle lateral  drift and 

bending moment a r e  closely interrelated. 

ir BM 
V 

W 
V 

W 

The characteristic equation of our rigid booster model is: 

A = d3S’ t d2S2 t dlS t do = 0, 

where: 

QF I 
d2 = ( m X  F a1 t - O )  E s  V 

(7) 



t 

feedback has a two-fold effect on the closed-loop poles: (1) the rigid body poles 

1 
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F o r  a nominal configuration (a 

the characterist ic equation becomes 

= 0.48, a1 = 1.1) of the booster control system, 
0 

A =(1.22060S3 t 1.64062s' t 0 .61564St  0.01149)*10'5 

-g2 (21.5879 S3 - 7.52654 S t 0. 30211)'101s = 0 ( 8 )  

In root locus form, equation (8) may be written 

( s - 0 .  0 4 0 1 ) ( ~  - 0.5692) (S t 0. 6094) 
(s  t 0.0196)(s t 0.6622 f j0. 1945) 

1 = 17.6864 g2 (9) 

Solution of equation (9) for some value of gz yields the closed-loop poles of both 

W W 

Effect of positive acceleration feedback, g2 , on the closed-loop poles of 

the nominal configuration of equation (9) is illustrated in the complex s-plane 

root 10CUS plot of Figure 2. For  gz = 0, the real pole near  the origin ( s  = -0.0196) 

is re fer red  to as the lateral drift pole, and the two oscillatory poles ( s  = -0. 6622 

f jo .  1945) are  identified as the rigid body poles. Increasing positive acceleration 
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become real as gz becomes larger than 0.0113, and (2) the lateral  drift pole 

moves from a small negative real quantity to zero a s  gz approaches 0.038, . 

and moves into the right half s-plane as gz is increased beyond 0. 038. Driving 

the minimum drift pole to zero will be shown to give a minimum vehicle response 

to lateral  wind disturbance. 

Y 
From the rigid body mathematical model (equation 1-6) the - (s)  transfer 

V 
W 

function is derived to be: 

n S‘ + n S + n o  Y t 1 
- (s )  = K V A 

W 

where: 

1 
V 
- K =  

nz = QF I 
0 

nl = (XEFsQF 0 - F S QFl)al 

Y 
F o r  low accelerometer gains (g2 < + 0.0113) ~ ( s )  is of the form 

W 

V 

and for higher accelerometer gains (gz > + O .  0113) 



4 
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* (sta) ( s tb )  
= (stcr)(stQ)(sty) 

W 

Using the numerical values of the rigid booster model (Table 1); the fre- 

quency response plot of - (jo) for the nominal configuration (a =O.  48, a1 =l. 1) 

is  shown in Figure 3 for variations in accelerometer gain. 

+ 
0 

W 
V 

It is seen that as the 

acceleration feedback increases to g2 = t 0. 038, the magnitude of - ( jw)  is i.1, I 
attenuated below the control frequency (approximately 1 radian). 

on the low frequency -(jo) 

drift pole from some small, real  negative value to zero as  the gain g2 increases. 

This effect 

magnitude is due to the movement of the lateral 
Y 

/ v w  I 
Y 

The ( jw) l  magnitude approaches a minimum when the accelerometer gain i s  

I 
''W I 

increased to g2 = t 0. 038. Since the log magnitude of -(jw)gat the control 

frequency is approximately -40 decibels and decreasing at -20 decibels per decade 
it W i 

for  frequencies above the control frequency, effect of the lateral  drift pole is  the 

dominant factor in determining the lateral drift characteristic of the vehicle. 

The rigid body bending moment transfer function is: 

where: 

BM n3 s3 t n2 s2 t nl s 
*SI = K A 

W 

1 
V 
- K =  
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Bys) is of the form V 
W 

for low accelerometer gain (g2< 0.01 13), and of the form 

10 

for higher gain g2 . 
F o r  the mathematical model (Table 11, the effect of positive lateral  accel- 

( jw)  (Nominal configuration; a =O. 48, a1 = 1.1) is shown BM 
eration feedback on - V 

in the bode plot of Figure 4. 

4 decreases  in magnitude below a'= 1 rad/sec. for increasing g2 , while i t  in- 

c reases  in magnitude for  increasing gz above w = 1 rad/sec.  Two trade-offs 

a r e  evident: (1) Relative importance of low and high frequency range* effects on 

the t ransfer  function magnitude, and (2 )  relative importance of lateral  drift and/or 

structural  loading. 

0 

BM 
The - (jo) transfer function as seen from Figure V 

W 

W 

* 
"Low" indicates those frequencies less than wLlrad/sec, and "high" denotes 

those frequencies greater than o k 1 rad/sec;  further reference in this report 
to this terminology should be interpreted accordingly. 
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The frequency range which is more important for alleviating the structural 

load is closely related to the frequency content (spectra) of the lateral wind 

input as  will be shown later in this report. 
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SIMPLIFIED TRANSFER FUNCTIONS 

D rift Cont r ol 

In view of the dominant effect which certain roots of the rigid booster 

12 

model characteristic equation have upon minimum drift and minimum load 

control, i t  is conceivable that the closed-loop +s) and --(SI transfer functions 

can be simplified significantly with little e r r o r .  

Y BM 
V 

W 
V 

W 

These simplified transfer 

functions will  be an aid for clarifying the cr i ter ia  for minimum drift and mini- 

mum load control. An approximate factorization of the - (s )  t ransfer  function 

is 

+ 
W 

V 

when the rigid body poles are underdamped (gz< 0.0113), and 

when the rigid body poles a r e  overdamped (g2 >O. 01 13) 

where: 



I -  
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D2 

D1 

0 
D 

a* 

a 

b 

Q 

B" 

Y 

N1 1 
- 2  2 - --7/Nt -4N0 - -  

Since, for our mathematical model, the lateral  drift pole, a, dominates the 

la teral  dr i f t  response, and since the pole-zero pair of - Y ( jw)  in the high f re -  
V 

W 
quency range, i. e. , the b-y pair,  has little effect upon lateral  drift character- 

istic, the approximate -( 6 )  transfer function of equation (17) can be simplified 

to 

Y 
V 

W 

where K ,  a ,  Q, and f3 a r e  given in equation (17). 
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+ 
Bode plots aE the simplified -(jo) transfer functions are shown in Figure 5. V 

W 

Load Control 

Y 
Using the same approach as used for approximating -(s), the approximate V 

W BM 
V closed-loop +s) transfer function is  

W 

for underdamped rigid body pole s (gzc t 0. 01 13)' and 

fo r  overdamped rigid body poles ( g z > t  0.0113) 

where: 

c =  

d =  
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D2 
2 ’  

p* = 

Dz 
= 2+ 

15 

It should be recalled that: (1) The pole-zero pair of - BM ( jw) in the high 

frequency region, i. e. the d-y zero-pole pair ,  dominates the bending moment 
W 

V 

response of the rigid booster model, and (2 )  the bending moment magnitude in 

the low frequency range in response to lateral  wind disturbances a r e  increasingly 

attenuated a s  positive lateral  acceleration feedback is increased. Thus, the 

BM 
approximate +s) transfer function of equation ( 2 0 ) -  is simplified to V 

W 

BM 
Bode plot of the simplified +jw) V 

where K ,  d, and y a r e  given in equation (20). 

t ransfer  function is shown in Figure 6. 
W 

Statistical Analysis of the Rigid Booster 

The adoption of statistical techniques to compute the vehicle responses to 

lateral wind disturbances was a convenient method for correlating and evaluating 

the exact and simplified t ransfer  functions. For  this purpose, two simplifying 

assumptions were made: (1) The vehicle system equations a r e  linear time- 

invariant for time equal eighty seconds after launch, and ( 2 )  the lateral  wind 

input is a stationary random process that can be roughly approximated by the 

well known Pres s  atmospheric turbulence spectra. 
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F o r  a linear time-invariant system, Laning and Battin have shown that 

the mean-square system  output,^' , i s  simply 

00 r 

2 

(w) = system output spectra 
GYY where: 

(w) = wind input spectra 
GVwvw 

Y( j w )  = system frequency response function. 

The mean-square lateral  drift velocity response is then 

and the mean-square bending moment response 

00 

Application of equation (22)  to determine the variance (mean-square response) 

demands stationarity of both the system responses and system inputs. 

tion of the system transfer  functions f o r  a fixed time of flight configuration 

a s su res  stationarity of system characteristics. 

wind characterist ics is assumed to be of the form suggested by P r e s s  and Meadows 

and is represented by the one-dimensional stationary spectra following: 

Deriva- 

An approximation to the lateral 
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I 

i 

z 
# L 1 + 3LZ [q 

W 

Gv w w  v 
= 7 [l..”l’ 

where: u = variance of the wind turbulence velocities 
W 

L = integral scale of the turbulence 

This spectra is plotted in Figure 7 for (r = 2 . 5 ,  L = 1000 
W 

Computation of the exact and simplified mean- square lateral  drift velocities, 

Z u Y , was accomplished using equation (23), by the following procedure: 

(1) 40 log l+Jja)i (Figures 3,5) was summed with 20 log G (jo) I vwvw 1 
(Figure 7) and plotted on a linear frequency scale in Figure 8 to obtain the 

lateral  drift  output power spectra,  G o  (a), for various values of accelerometer YY 

gain, gz . 
( 2 )  The a r e a  underlying G (a) was integrated with a planimeter to Pir 

obtain the mean-square lateral drift velocity. The same procedure, using 

equation (24) and Figures 4, 6, and 7 ,  was used to compute the mean-square 

(a), shown G ~ ~ - ~ ~  bending moment, (rz 

in Figures 9- 10. 

from the output power spectra, BM’ 
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EVALUATION O F  SIMPLIFIED TRANSFER FUNCTIONS 

Evaluation of the simplified lateral drift and bending moment t ransfer  

functions developed in this study utilizes the mean-square Y and BM outputs 

as a performance index. 

interpreted as values of these quantities which occur approximately 67 percent 

of the time. 

The root-mean-squared values of Y and BM may be 

Comparison of u and u values obtained from their exact and simplified ? BM 

transfer functions, for  the nominal configuration (ao = . 48 ,  a1 = 1.1) and varying 

lateral  acceleration feedback, is shown in Figure 11. Negligible e r r o r  is per- 

ceptible in u 

7 ljo). u 

transfer function by approximately 5 percent. 

exhibited by the simplified bending moment transfer function is not of sufficient 

as determined from the exact and simplified expressions for 

obtained from 3 j w )  simplified exceeds u 

+ 
B BM 

of the exact - (jo) 

It is felt that the maximum e r r o r  

Y 

W 
BM V 

W 
BM 

W 

magnitude as to offset the insight it lends  to the complicated minimum load con- 

t rol  problem. Thus, the simplified lateral drift and bending moment transfer 
t 

functions possess the advantage of approximating their exact expressions within 

acceptable e r r o r ,  with an attendant clarity which aids in determination of the 

basic cr i ter ia  for  minimum drift and minimum load control. 
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CRITERIA FOR MINIMUM DRIFT AND MINIMUM LOAD CONTROL 

Minimum drift and minimum load control cr i ter ia ,  f o r  the mathematical 

booster model considered in this study, a r e  stated below. 

Minimum Drif t  

(1) Vehicles lateral  drift response to lateral wind disturbance is domi- 

nated by the lateral drift pole (i. e. , the negative, real  pole close to the origin) 

of the closed-loop - ( s )  transfer function. V 
Y 

W 

(2) The lateral  drift pole is approximately 

( 3 )  Minimum lateral drift i s  accomplished by driving the lateral  drift 

pole, a , close to the origin, i. e. , when d;O. The lateral  acceleration feedback 

satisfying this condition for  minimum drift, in the limit, tends to 

a 
.038 mF1 0 gt = - -  

g F S ( X E F o - ~ l  

(4) Increases in pitch heading gain, ao, and pitch damping gain, ai , 

affect the lateral  drift pole as shown in Figure 12. 

Minimum Load 

(1) Bending moment response to lateral wind disturbance exhibits a 
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I 
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trade-off about the control frequency, i. e. , positive lateral acceleration feed- 

back attenuates the bending moment for frequencies less than o & 1 rad/sec 

while it amplifies the bending moment fo r  frequencies greater than w g  1 rad/sec; 

negative acceleration feedback reverses the effect. 

(2) The simplified rigid body transfer function is 

s t b  
s t y  

-(s) K - ; BM 
V 

W 

this rigid body zero-pole pair ,  b-y, is located in the frequency region above 

Increases in 1 rad/sec,  and dominates the bending moment response. 

lateral acceleration feedback cause b and y to separate, resulting in a favorable 

effect on structural load reduction below w 2 1 rad/sec,  and a detrimental effect 

above w 1 rad/sec.  

(3)  Bending moment trade-off -wind input intereffects, particularly if 

higher order  d v a m i c s  a r e  considered, cloud the determination of specific 

cr i ter ia  fo r  minimizing structural loading, i. e. , specific cri teria for minimum 

load control depend primarily on the lateral wind spectra. 

I 
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CONCLUSIONS 

21 

The major conclusions which may be drawn from this re-evaluation of 

cr i ter ia  for minimum drift  and minimum load control are: 

(1) Simplified lateral  drift and bending moment closed-loop transfer 

functions developed in this study approximate their exact transfer functions 

with negligible e r ro r .  

(2) These simplified transfer functions clarify the dominant effects 

which system parameter changes have on minimizing lateral drift and structural  

loading. 

( 3 )  Minimum drift control is easily specified by positioning a single 

root of the vehicle characteristic equation. 

(4) Minimum load control cri teria a r e  obscurely defined in terms of the 

interrelation which exists between the rigid body control frequency trade-off and 

the la te ra l  wind disturbance spectra. 

While studies to date suggest the trade-off effect on structural loading 

is small, this indication is obtained using wind spectra of, a s  yet, undetermined 

quality to represent actual wind spectra. 

tions and including parameter changes with time neglected in this study, could 

conceivably al ter  the current  emphasis on the trade-off effect. 

tion of minimum load control cr i ter ia  as influenced by minimum drift control, 

based on procedures developed herein, is dependent upon a better definition of 

actual wind spectra characteristics a t  various flight t imes.  

In addition, insertion of initial condi- 

A better resolu- 
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